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a  b  s  t  r  a  c  t

An  optimal  control  strategy  based  on Pontryagin’s  Minimum  Principle  (PMP)  is a promising  solution
because  it  provides  a  simple  solution  for controlling  Hybrid  Electric  Vehicles  (HEVs)  and  guarantees  the
best  performance  under  reasonable  conditions  [1,2].  However,  it needs  to be  very  careful  when  applying
the control  strategy  if inequality  state  constraints  are  active  because  handling  the  state  constraints  is  one
of the  difficult  issues  in  optimal  control  problems.  In contrast  to  HEVs,  Plug-in  Hybrid  Electric  Vehicles
(PHEVs)  possibly  consume  all of  the  available  electric  energy,  and  so  the  activation  of  the  state  constraint
on  minimum  State  of  Charge  (SOC)  is, unfortunately,  a very  common  control  problem  for  PHEVs.  This
paper  describes  mathematical  derivations  for an  additional  condition  necessary  for  the  inequality  state
constraints  and  solves  the  problem  with  several  control  options.  Whereas  PMP-based  control  allows  a
ontryagin’s Minimum Principle
tate inequality constraint
ump condition

unique  solution  for  HEVs  [2],  this  paper  shows  that  the  control  idea  based  on  PMP  produces  a  number  of
alternative  solutions  for  PHEVs.  However,  battery  efficiencies  can  be  considered  to  evaluate  the optimality
of each  solution,  and  simulation  results  from  several  control  options  show  that  maximizing  a  blended-
mode  control  is  the  best  solution  to  saving  fuel  for  PHEVs.  In terms  of performance,  the results  of  applying
blended-mode  control  are  very  close  to those  obtained  by applying  a global  optimal  solution  obtained
from  Dynamic  Programming  (DP).
. Introduction

Energy management in Hybrid Electric Vehicles (HEVs) is a very
nteresting subject in that system efficiency could be improved by
hanging a control algorithm in the Hybrid Control Unit (HCU).
his improvement could be achieved without additional costs,
r sometimes, affords the opportunity to cut costs by optimizing
he size of the components that have unnecessarily high capacity.
or the last decade, a number of energy management strategies
hat aim to control the system in optimality have been vigor-
usly researched, and several comparative studies classified the
trategies according to algorithms, such as rule-based control, arti-
cial intelligence control, and control based on optimal control
heory [3–6]. One of the ideas based on optimal control theory, a
ontrol concept based on Pontryagin’s Minimum Principle (PMP),
as introduced as a supervisory control algorithm, and the Equiv-

lent Consumption Minimization Strategy [7] has been interpreted
n the concept of PMP  [1,8,9].  On the other hand, a study has proved
hat PMP-based control guarantees global optimality under real-

stic conditions [2].  Furthermore, several researchers have shown
hat the control concept based on PMP  is potentially promising
10–13].  As another control idea based on optimal control the-
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ory, Dynamic Programming (DP) is an outstanding method when
solving the optimal control problem because it always produces an
unbeatable solution, but it is not easy to directly apply the concept
to real-time control. On the other hand, PMP  is very easily applied
to the Real World, but the optimality should be carefully verified
because PMP  does not automatically guarantee the optimality—it
only provides necessary conditions for an optimal solution. There
are several studies that proved the optimality of PMP-based con-
trol in HEVs [1,2], but the application of the control idea needs
additional consideration if it is applied to Plug-in Hybrid Electri-
cal Vehicles (PHEVs). This paper primarily describes the theoretical
application when the control idea is applied to PHEV because a
solution from PMP  shows a different pattern if the state of the con-
trol problem is constrained by conditions of inequality. Handling
inequality constraints in PMP  is very complicated because the con-
straints possibly produce ambiguity, which is, frequently, called a
jump condition [14]. In this paper, the additional jump condition
for PHEVs is derived from mathematical idea, by which the con-
dition can be explained by physical meaning because the co-state
of PMP  is interpreted as an equivalent weighting factor between
fuel usage and electrical usage. In general, there exist two  feasible
control ideas for PHEVs. One idea is consuming allowable or usable

electrical energy as soon as possible and sustaining State of Charge
(SOC) on the depleted level. The other idea is using a blended mode
as much as possible, so that the system finally consumes all of the
usable electrical energy at the end of the trip. These ideas are not

dx.doi.org/10.1016/j.jpowsour.2011.07.003
http://www.sciencedirect.com/science/journal/03787753
http://www.elsevier.com/locate/jpowsour
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r Sources 196 (2011) 10380– 10386 10381

n
t
b
S
s
i
t
f
t
m

2

i
s
t
i
c
o
s
s
i
c

2

c
s
o

m

o
l

H

w
s
fi
s

x

�

i

H

b
a
s
u
w
a
E
l
t
t
B
p
A

N. Kim et al. / Journal of Powe

ew concepts, but both of them can be realized by PMP-based con-
rol with the jump condition, and, substantially, they are optimized
y the concept, so their maximum performance can be evaluated.
imulations for PHEVs based on these control ideas show that the
ystem truly achieves optimality under the second control option
n the maximized blended mode. We  believe that this paper con-
ributes modestly to an understanding of the optimal control idea
or PHEVs, and so researchers will be able to use the information in
his paper to create strong solutions that could be feasible energy

anagement strategies for PHEVs.

. Control with state constraints

Optimal control based on PMP  can be considered to be a promis-
ng solution not only for HEVs but also for PHEVs. In reality, an exact
olution of the control concept guarantees global optimality when
he efficiency of the battery has a concave curve for SOC if there
s not a state constraint [2].  It is, however, not easy to solve the
ontrol problem if the state constraints exist, such as a limitation
f SOC range, and applying the control concept at the state con-
traints should be carefully dealt with an exact solution. In this
ection, necessary conditions associated with PMP  with inequal-
ty state constraints are introduced to address the control issue on
onstrained boundaries.

.1. Necessary conditions

As a clever interpretation of the Euler–Lagrange equation in Cal-
ulus of Variation, PMP  produces necessary conditions that optimal
olutions should satisfy. When the control looks for the minimum
f a functional, g,

in  J =
∫

g(x, u, t)dt (1)

ver pairs (x, u) that satisfy Ẋ = f (x, u), the Hamiltonian of this prob-
em is defined as:

 = g(x, u, t) + � · f (x, u) (2)

here � is Lagrange multiplier, which is frequently called as a co-
tate in optimal control problems. When the final time and the
nal state are fixed, the principle requires that the optimal solution
atisfies the following conditions [1]:

˙ = ∂H

∂�
(3)

˙ = −∂H

∂x
(4)

Further, the Hamiltonian on the optimal pair (x*, u*) should sat-
sfy that

(x∗, u∗, �∗, t) ≤ H(x∗, u, �∗, t) (5)

The input u, if there are constraints for u, should be admissi-
le input for given x and t, and x*(t) satisfies boundary conditions
t initial and final states. Simply, Eq. (3) always resulted in the
tate equation of Ẋ = f (x, u), and Eq. (5) is, intuitively, a quite nat-
ral condition to obtain an extreme solution—that is, the means by
hich the optimality cannot be achieved with u inferior to other

dmissible u. The only intuitively incomprehensible condition in
q. (4),  in fact, came from the state equation. In optimization prob-
ems, the multipliers are utilized for compensating the penalty of
he constraint function and are determined by the relative geome-

ries between the objective functions and the constraint functions.
ecause the functions generally do not depend on each other, inde-
endent multipliers are supposed to be for each constraint function.
s a special case of the optimization problem, the optimal control
Fig. 1. An inequality state constraint, h(x,t) ≥ 0, returns the state into the feasible
area.

problem could also produce an arbitrary multiplier set, �, in each
constraint f in every moment, but the multiplier can be charac-
terized by another state equation, like Eq. (4),  because the state
equation, Ẋ = f (x, u), gives additional information for f according
to time, which is a very unique factor that categorizes the optimal
control problems under the general optimization problems. On the
other hand, an important note to this optimal principle is that it
does not fulfill a sufficient condition for the optimality. If a solution
satisfies these necessary conditions, it is just a candidate for an
absolute solution. It is, however, proved that the necessary condi-
tion can be sufficient to solve the optimal control problem of HEVs
when the SOC limitations are not considered [1],  and, further, the
optimality is also available, even when using a wide range of SOC,
if battery efficiency is a concave function of SOC [2].  In this paper,
our discussions are based on the global optimality of those studies,
and the optimality will be considered when the SOC  limitation is
applied for PHEVs.

2.2. Inequality state constraints

As stated in the beginning of Section 2, if an inequality state
constraint in Eq. (6) exists as shown in Fig. 1, the optimal con-
trol problem becomes more complicated than the problem without
constraints for the state x.

h(x, t) ≥ 0 (6)

In this case, an optimal co-state �* that satisfies the necessary
condition in Eq. (4) might be discontinuous—the discontinuity is
not a violation of Eq. (4),  but co-states without the constraint are
generally continuous. For last several decades, a number of meth-
ods have been introduced to solve optimal control problems with
inequality state constraints, which are, of course, very effective on
various types of constrained states, but they are not causal or are,
sometimes, ambiguous. Hartl et al. researched a number of method-
ologies and categorized them by several groups [14]. Although
there are many methods, using a concept of a jump for the discon-
tinuity of the co-state is a very useful idea to describe the solution
of the inequality state constrained problems, so an additional con-
dition that describes the jump will be briefly introduced, and the
application of the control idea will be discussed in the following
section. Before the discussion, it should be noted that there were
two  studies that solved the control problem of PHEVs by applying
alternative methods. One study [11] used an additional multiplier
with a direct adjoining approach [14], which is substantially based
on Karush Kuhn Tucker condition, and the other one [1] utilized
McGill’s approach, which is based on the numerical penalty con-

cept [15]. These are very effective approaches to find out optimal
solutions, but the former solution is not easy to be designed as
a forward looking controller, and the later solution includes an
ambiguity because the penalty concept is not realistic. Therefore,
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constrains force x to stay in a feasible area, like that shown in Fig. 3).
The virtual displacement ıxj is not an arbitrary value any more

when x touches the state constraint. If x is starting to move along the
inequality constraint, the constraint equation is activated, h(x, t) = 0,
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 comprehensive approach based on jump condition is very useful
or the practical control problem of PHEVs.

.3. Jump conditions

As stated in Section 2.1,  the co-state � is characterized by the co-
tate equation in the optimal control problem in Eq. (4),  whereas
agrange multiplier � is determined by the geometric relation
etween the objective functions and the constraint functions in
eneral optimization problems. However, the arbitrary characteris-
ic may  appear when the inequality state constraint is active, which
s called a jump condition. The mathematical condition for the idea
f the jump will be derived in this section. Considering the state
onstraint, the functional J in Eq. (1) can be expressed as [16]:

 =
∫ tf

t0

{
g(x, u, t) + �(f − ẋ)

}
dt (7)

here t0 and tf are an initial time and a final time. The objective of
he control is to find out an extreme trajectory that minimizes the
unctional in Eq. (1) or Eq. (7) while satisfying all of the boundary
onditions, for which the variation of J should be zero

J = 0 (8)

The variation ıJ can be obtained according to ıx, ıu, and ı�,
hich can be expressed as [17]:

J = �0ıx0 − �f ıxf − H0ıt0 + Hf ıtf +
∫ tf

t0

[{
ẋ − ∂H

∂�

}
ı�

+
{

�̇ + ∂H

∂x

}
ıx + ∂H

∂u
ıu

]
dt = 0 (9)

here H is defined as the Hamiltonian in Eq. (2).  The boundary val-
es, x0, �0, and H0, are respectively initial values for each variable,
nd xf, �f, and Hf are final values for them. In the general control
roblem, the initial time and the initial state, t0 and x0, are fixed
ecause they are possibly given, so the variations for these two
ariables are zero, ıt0 = ıx0 = 0. Therefore, Eq. (9) is to be:

J = −�f ıxf + Hf ıtf +
∫ tf

t0

[{
ẋ − ∂H

∂�

}
ı� +

{
�̇ + ∂H

∂x

}
ıx

+∂H

∂u
ıu

]
dt = 0 (10)

Considering that ı�,  ıx, and ıu are arbitrary values, all of the
erms in Eq. (10) need to be zero to satisfy ıJ = 0. If xf and tf are fixed,
he first and second terms in Eq. (10) also become zero because ıxf
nd ıtf are zero, which allows the optimal trajectory to have any
alues for �f and Hf. Further, by setting the destinies to zero, the
hree terms in the integral result in the three necessary conditions
n Eqs. (3)–(5).  In PMP, the necessary condition requires the mini-

ization of Hamiltonian in Eq. (5) instead of ∂H/∂u = 0, which is a
ore generalized condition for optimality. On the other hand, we

an expand the idea to a piecewise optimal control and consider ıJ
hen x has a corner at tj, as shown in Fig. 2.

Dividing the trajectory by two different segments, [t0 tj] and [tj

f], the functional J can be expressed as:

 =
∫ tj

t0

{
g(x, u, t) + �(f − ẋ)

}
dt +

∫ tf

tj

{
g(x, u, t) + �(f − ẋ)

}
dt
(11)

The extreme condition in Eq. (8),  ıJ = 0, must be satisfied though
* has an unexpected corner. Eq. (9) can be applied to each segment
Fig. 2. A piecewise-smooth trajectory. An optimal x* has a corner at tj and Ẋ∗ is not
continuous at tj . [17].

of the functional J when x0, t0, xf, and tf are fixed. ıJ can be expressed
as:

ıJ = −(�−
j
−�+

j
)ıxj + (H−

j
− H+

j
)ıtj +

∫ tj

0

[{
ẋ − ∂H

∂�

}
ı�

+
{

�̇+∂H

∂x

}
ıx+∂H

∂u
ıu

]
dt+

∫ tf

tj

[{
ẋ−∂H

∂�

}
ı�

+
{

�̇+∂H

∂x

}
ıx+∂H

∂u
ıu

]
dt=0  (12)

where �−
j

and H−
j

are the values at left-hand side limit of the junc-

tion time tj, and �+
j

and H+
j

are the values at right-hand side limit.
From the external terms of the integral, a condition at the corner,
or at junction time tj, is obtained, which is expressed as:

−(�−
j

− �+
j

)ıxj + (H−
j

− H+
j

)ıtj = 0 (13)

As well as Weierstrass–Erdmann corner condition is derived for
the Euler–Lagrange equation [17], a corner condition for PMP  can
be derived as Eq. (13). The meaning of the jump condition can be
described by Eq. (13). If there does not exist any constraint bar-
rier for x, ıxj and ıtj can be arbitrary values, so −(�−

j
− �+

j
) and

(H−
j

− H+
j

) must be zero; there is no jump for the co-state or Hamil-
tonian when there is no barrier for the state. The jump condition,
however, appears when an additional condition enforces a corre-
lation between ıxj and ıtj (i.e., the barrier of the inequality state
Fig. 3. The optimal trajectory x hits the state barrier at tj , but it cannot penetrate
it and possibly moves according to the barrier. On the barrier, ıxj and ıtj are not
arbitrary values any more. The corner condition is also available when x just touches
it  and is rebounded.
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nd the variation of h should be zero until the state leaves the
onstraint, which can be expressed as:

h = ∂h

∂x
ıx + ∂h

∂t
ıt = 0 (14)

From Eqs. (13) and (14), a new necessary condition at tj is
btained when the inequality constraint is activated:

ıxj

ıtj
=

H−
j

− H+
j

�−
j

− �+
j

= − ∂hj/∂t

∂hj/∂x
(15)

here ıtj is not zero. This relation is stating that

+
j

= �−
j

− �
∂hj

∂x
(16)

+
j

= H−
j

+ �
∂hj

∂t
(17)

here � is an arbitrary value for splitting the equation. There is
n additional condition that characterizes �—that is, � is always
ositive in our condition, but it could be different in other studies
ecause the condition depends on the signs of the definitions [14].
t does not, however, provide important information to determine

 forward in time. On the other hand, this jump can occur in every
ntry in which x hits the boundary, or it can occur while x is fol-
owing the boundary, which is why various methodologies exist to
haracterize � and �, even for an identical x. In conclusion, although
qs. (16) and (17) do not directly give the answer for designing a
ontroller for PHEVs, we can understand the jump condition that �
ay  jump to a different value when x touches the barrier of the state

onstraint, and this is a very useful and practical idea for solving the
ptimal control problem in PHEVs.

. Optimal control for PHEVs

Beyond the mathematical derivation presented in the previous
ection, the goal of this study is to design a practical controller for
HEVs. In this section, the application of PMP  for PHEVs will be
ntroduced, and the energy management issue will be discussed
n the basis of Charge Depleting (CD), Charge Sustaining (CS), and
lended modes.

.1. PMP  on PHEVs

When State Of Charge of the battery, SOC, is the state x, and
ower of the battery, Pbat, is the control u, PMP-based control aims
o find out optimal control u like shown in Eq. (5) when the Hamil-
onian can be expressed as:

 = ṁfc(Pbat, t) + � · f (SOC, Pbat) (18)

here ṁfc is a fuel consumption rate, and f is a state equation for
OC [1].  The control, Pbat, is constrained by the system’s limitations,
uch as motor torque limit, regenerative braking limit, or battery
ower limit. Meanwhile, the state, SOC, is generally constrained by
he limitation of SOC, i.e.,

OCmin ≤ SOC ≤ SOCmax (19)

here SOCmin and SOCmax are minimum and maximum limitations.
n the control problem for PHEVs, considering that SOCmin is a con-
tant, the barrier of the constraint in Fig. 3 is exactly flat. Therefore,
xj should be zero at any junction time tj whereas ıtj can have an
rbitrary value, which means that the jump occurs only for �, not
or H [see Eq. (13)]. On the basis of the concept, a practical con-

rol solution with the jump condition can be expected as shown in
ig. 4.

When the vehicle is starting at full SOC at t0, an initial co-state,
cd
0 , can be selected for a Charge Depleting mode, and � is calculated
Fig. 4. Control concept for �. While SOC is in the allowable range (>SOCmin), � is
calculated from the co-state equation according to initial values, and it jumps to
another value when SOC hits the constraint.

from the co-state equation in Eq. (4) for the depletion. If SOC hits
SOCmin, � jumps to �cs

0 , which is an initial value for a Charge Sus-
taining mode, but the co-state equation in Eq. (4) is still available for
�. In that � is interpreted as a weighting factor of electrical usage,
the jump physically means a change in the overall pattern of elec-
trical consumption to avoid violating the constraint. For instance, it
informs the controller that the electrical energy becomes an expen-
sive source when SOC hits the minimum limit. Now, an intricate
question remains in this control concept—how we can choose �cs

0
and �cd

0 ? In terms of the conclusion, there is no brilliant method to
estimate these co-states, but alternative ways could be considered
for the Real World application. For example, if �cd

0 is selected as 0,
the controller tries to use electricity as much as possible because
the Hamiltonian would give a message that the cost of the electrical
usage is very low, or zero. After consuming all possible electricity
under the zero co-state, the controller can choose an appropriate
�cs

0 if the future driving cycle is given [10], or, if no information is
given, the controller can regulate the �cs to sustain SOC [13], both
of which are very practical solutions and showed good results in
simulations. This control option could be a practical solution, but
the problem is that the solution is unfortunately not a unique one
obtained from PMP-based control. Because � affects the pattern of
SOC, selecting different �cd

0 at the starting time causes a different
junction time tj, and the controller should choose another �cs

0 to
sustain SOC at the depleted level, at which a lot of solutions that
satisfy the jump condition could exist. PMP  does not state which
solution is the best one because all of these solutions satisfy the
necessary conditions from PMP, so the optimality will be discussed
on the basis of additional information in the following section.

3.2. Blended-mode control

As stated in the previous section, applying the necessary con-
ditions to address the control problems of PHEVs does not result
in a unique solution, so several strategies to realize the PMP-based
control with the jump condition could be considered for the opti-
mal  solution. The easiest control is to try and not use fuel until all
of the usable electrical energy is depleted, as we  suggested in the
previous section. In that case, the Charge Depleting (CD) mode is
shortened like the SOCa shown in Fig. 5 because the controller does
not allow the engine to be turned on if the motors can produce all of
the requested power until the usable electrical energy is exhausted.
After the CD mode, the Charge Sustaining (CS) mode can be real-
ized by an appropriate �cs

0 . One of the alternatives, SOCb in Fig. 5,
uses a blended-mode control that allows the engine to support the

propulsion power even though motors are capable of supplying all
of the requested power. To realize this scenario, a well-estimated
initial �0 at t0 is absolutely necessary, so that SOC  does not touch
the limit, and the system consumes all electrical energy at tf, as
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ulations, the simulator uses multiple shooting methods combined
with a variation of extremals [1].  The trajectory ‘DP’ is introduced
to prove that ‘PMP exact’ is the best real solution of the three PMP
solutions.

Table 1
Vehicle parameters used in simulations.

Vehicle total mass 1490 kg
Engine 1500 cc (peak power: 43 kW)
Motor1 25 kW (peak power: 50 kW)
Motor2 15 kW (peak power: 30 kW)
Battery 5.2 kW h
Planetary gear ratio 2.6 (78/30)
Final gear ratio 4.113
Rolling resistance coefficient 0.007 + 0.00012 × vehicle velocity
ig. 5. SOCa tries to use pure-electric mode as much as possible, whereas SOCb

tilizes the blended mode until the end of the driving cycle.

hown in Fig. 5. Both of SOCa and SOCb should be considered as
ptimal solutions that satisfy the necessary conditions of PMP. The
ifference between the two is that SOCa requires a jump when the
ystem turns from CD mode to CS mode, but SOCb does not have
he discontinuous � because the constraint has not been activated.
ecause both of these control options fulfilled the optimality, the
erformance of the control cannot be compared by PMP. Instead,

t needs to consider the battery efficiency to compare these two
ontrol scenarios.

If the battery were very efficient at low SOC (like SOCmin), SOCa

ould be superior to SOCb because SOCa, intuitively, operate in the
fficient range more so than SOCb. In the real world, however, SOCa

oes not operate in the efficient range because battery is generally
nefficient near SOCmin—that is one reason why there is a limitation
f minimum SOC. Under a realistic battery model, a previous study
howed that the SOCb is a global and unique solution when there
s no limitation for SOC [2],  which is the case where the vehicle is
ontrolled by a continuous � without jump. According to the proof,
here is no alternative solution that can defeat the continuous � if
he efficiency curve is concave for SOC, and if the efficiency near
OCmin is lower than other SOC. By expanding this idea, a conclu-
ion can be obtained that PMP-based control always achieves the
etter performance if the blended mode lasts for as long as possible:
OCb > SOCc > SOCa. In that the blended mode has more opportuni-
ies to control the power management than all-electric mode, this
onclusion is reasonable. However, choosing an appropriate initial
0 at t0 for the all-blended mode is not convenient when the driv-

ng schedule is not given prior, and so a practical concept for the
lended mode could be truly realized with intelligent devices based
n a Global Positioning System, or it could be applied to vehicles
riven under predictable patterns, like buses on regular routes [12].

. Optimal control simulation

Three control scenarios are used in this study. The first is the
ontrol that maximizes the blended mode, which produces a tra-
ectory of SOC like SOCb in Fig. 5. The second is the control that
ses the all-electric mode—the engine produces power only when
he motors does not supply all the requested power—and CS mode,
ike SOCa, in which the co-state � needs to jump when entering
S mode. The third is a solution from Dynamic Programming that
roduces an absolute trajectory, which is used to verify the optimal
olution from PMP.

.1. Simulation and vehicle model

The vehicle model used in this study is a power split hybrid sys-
em that has a single planetary gear set as a power split device,
ike that shown in Fig. 6. All of the data for the component models

nd vehicle model are based on a 2004 Toyota Prius in Autonomie
eveloped by Argonne National Laboratory (see Table 1) [18]. Espe-
ially, the battery capacity is expanded from 1.3 kW h to 5.2 kW h
o realize the PHEV’s performance [19].
Fig. 6. The simplified configuration of the power split hybrid system used in this
study.

To solve the optimal control problem, OC SIM, which was devel-
oped by Seoul National University, is used for each control option.
The simulator is designed for users to easily define the vehicle’s
configuration and to select the components from its database. The
simulator is able to produce the optimal control trajectory solved
from both PMP  and DP by using a backward-looking simulation.
The vehicle model is evaluated on the Urban Dynamometer Driving
Schedule (UDDS) extended to 5 times the cycle, which is selected
to have sufficient distance to observe the differences among the
control options when different initial co-states are chosen. This
study is only focusing on a relative comparison of the optimal con-
trol concepts, whereas selecting a representative cycle or sizing a
battery capacity could be another critical issue for evaluating the
performance of PHEVs [19].

4.2. Simulation results

As the condition of PHEVs, the simulation used the initial SOC
as 90% and allowed the system to consume the electrical energy
until SOC fell to 20%. By selecting multiple initial co-states, different
solutions can be obtained from PMP  control. Fig. 7 shows three
different SOC trajectories solved by PMP  and one SOC trajectory
solved by DP.

First, the trajectory ‘PMP jump 1’ is the solution when �cd
0 is

zero at starting time. In that case, the system tries to consume the
electrical energy as much as possible until SOC hits the constraint,
and, when SOC does hit the constraint, the co-state jumps to an
appropriate �cs

0 , so SOC is sustained until the time horizon, which
is the case of SOCa described in section 3.2. ‘PMP jump 2,’ is another
case of PMP  solution in which the initial co-state �cd

0 is smaller than
the value of ‘PMP jump 1,’ which is able to extend CD mode up to
about 5000 s by using the blended-mode control, but it still needs
the jump of the co-state when entering to CS mode. On the other
hand, the SOC trajectory ‘PMP exact’ is obtained by selecting an
appropriate �0, so that the system uses only the blended mode for
the entire driving cycle. To find out the exact �0 from iterative sim-
Frontal area 2.25 m2

Drag coefficient 0.29
Wheel radius 0.305 m
Air density 1.23 kg m−3
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Fig. 7. SOC trajectories when jump condition is applied. ‘PMP exact’ indicates the
optimal solution when there is no jump, and DP solution shows that ‘PMP exact’ is
the optimal solution.
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three PMP  solutions are shown in Table 3 with the corrected values.
If the controller realizes a blended mode for the entire driving

cycle, it can save about 6% in fuel consumption compared to using
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ig. 8. Trajectories of co-states are discontinuous when SOC hits the constraint.

Optimal trajectories of co-states for the three solutions are
hown in Fig. 8, in which the co-states for ‘PMP jump 1’ and ‘PMP
ump 2’ jump to other co-states when SOC hits 20%, and �cd

0 and
cs
0 for the trajectories are shown in Table 2. On the other hand,
he co-state could be considered to be a near constant value for
he control problem of HEVs [1,9], and the co-states shown for CS

odes in Fig. 8 are not changed much, which makes the controller
imple when it is applied to the real vehicle. However, the co-states
n CD modes show relatively greater change than the CS modes, so
t is not a good approach to use a constant co-state for the control
f PHEVs.

The objective of the control is to minimize fuel consumption,

nd so the performance of the control is evaluated on the basis of
otal fuel consumption, as shown in Fig. 9.

able 2
ump conditions of each solution.

Initial � or �cd
0 �cs

0 Entry time (s)

PMP jump 1 0 −1160.53 3874
PMP jump 2 −1180 −1158.87 5011
PMP exact −1225.72 – –
Fig. 9. The results of total fuel consumption according to jump conditions.

As we discussed in Section 3.2,  the solution from ‘PMP exact’ that
maximizes the blended mode achieves the best performance of the
three PMP  solutions. As long as the battery has higher efficiency
at middle range of SOC than at low range, it is quite natural that
the optimal solution would not stay at low SOC. To compare the
exact performance of the control options, corrected fuel consump-
tions are calculated. By selecting appropriate initial and jumped
co-states, the final SOC of each solution is very close to the desired
final value. However, it is not possible to numerically select a co-
state that exactly produces a desired final SOC, and so the corrected
fuel consumption is used to compare the performances of the con-
trol options.

For example, the fuel consumption of ‘PMP exact’ is 539.55 g,
while the final SOC is 19.94%, which is not the desired value of 20%.
The fuel consumption is shifted to equivalent fuel consumption at
20% according to the optimal pattern of fuel consumption obtained
from DP, as shown in Fig. 10,  by which the performance can be
evaluated at the equivalent usage of electricity. The results for the
19.92 19.94 19.96 19.98 20 20.02
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Fig. 10. An example of the correction for exact PMP solution.



10386 N. Kim et al. / Journal of Power Sources 196 (2011) 10380– 10386

Table  3
Total fuel consumption of each control.

Fuel consumption (g) SOCf (%) Corrected fuel consumption (g) Fuel save (%)

PMP  jump 1 575.134 20.0005 575.128 –
PMP  jump 2 553.858 19.9726 

PMP  exact 539.550 19.9359 

DP  538.710 20.0000 
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ig. 11. The fuel consumption and the ratio of the blended mode to the entire driving
ycle, according to co-states.

he all-electric driving mode. The fuel savings and the ratio of the
lended mode according to the co-state are shown in Fig. 11.

In the figure, the ratio of the blended mode is defined as:

atio of blended mode = Driving time of a blended mode
Driving time of a entire trip

(20)

Although the co-state of ‘PMP jump 1’ starts with zero for �cd
0 , we

ould obtain very similar SOC trajectories if �cd
0 is −1000 because

he Hamiltonian mostly produces a control signal that enforces to
se the electrical energy as much as possible in this range of the co-
tate from 0 to −1000. The blended mode is effectively extended
hen �cd

0 is in the range from −1000 to −1225. If the initial co-
tate is smaller than the optimal co-state (−1225.72), the control
ased on PMP  cannot produce an optimal solution that satisfies the
oundary condition, SOCf = 20%.

. Conclusion

Pontryagin’s Minimum Principle requires an additional con-
ition when solving an optimal control problem with inequality
tate constraints. A jump condition can be utilized to satisfy the
tate constraints, which makes the co-state discontinuous when
he constraint is active. The behavior of the co-state under the
ump condition is complicated because not only the concept of
ump needs to be carefully derived by mathematical consideration

ased on Calculus of Variation, but also the exact amount of the

ump is not determined forward in time. Optimal control for PHEVs
as the same issue as the stated control problem because PHEVs
ossibly consume all usable electric energy, and a controller con-

[

[

554.141 +3.65
540.214 +6.07
– +6.33

strains the SOC of PHEVs, so that it does not operate lower than a
certain value, such as SOC ≥ SOCmin. In this study, the control prob-
lem of PHEVs is described by focusing on the jump condition, and it
shows that the jumped co-state physically means the change of the
usage pattern of electrical energy for not violating the constraints.
Several control options that satisfy the necessary conditions of PMP
are introduced according to the jump condition. On the basis of a
backward simulation technique, maximizing the blended mode is
the best control solution to minimize fuel consumption—optimal
control maximizes the blended mode and results in fuel savings of
up to 6% on an about 35 miles urban cycle, compared to the control
option that consumes the available electricity as soon as possible.
Although the PMP-based control with the jump condition very well
explains the behavior of the optimal control for PHEVs, applying the
control concept to the Real World is another problem because lots
of experience is essential to design a controller that approximates
a good co-state. However, understanding the behavior of the co-
state on the control problem is an important step in applying the
control concept to the Real World.
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